skip to main content


Search for: All records

Creators/Authors contains: "Vesala, Timo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Wetlands are responsible for 20%–31% of global methane (CH4) emissions and account for a large source of uncertainty in the global CH4budget. Data‐driven upscaling of CH4fluxes from eddy covariance measurements can provide new and independent bottom‐up estimates of wetland CH4emissions. Here, we develop a six‐predictor random forest upscaling model (UpCH4), trained on 119 site‐years of eddy covariance CH4flux data from 43 freshwater wetland sites in the FLUXNET‐CH4 Community Product. Network patterns in site‐level annual means and mean seasonal cycles of CH4fluxes were reproduced accurately in tundra, boreal, and temperate regions (Nash‐Sutcliffe Efficiency ∼0.52–0.63 and 0.53). UpCH4 estimated annual global wetland CH4emissions of 146 ± 43 TgCH4 y−1for 2001–2018 which agrees closely with current bottom‐up land surface models (102–181 TgCH4 y−1) and overlaps with top‐down atmospheric inversion models (155–200 TgCH4 y−1). However, UpCH4 diverged from both types of models in the spatial pattern and seasonal dynamics of tropical wetland emissions. We conclude that upscaling of eddy covariance CH4fluxes has the potential to produce realistic extra‐tropical wetland CH4emissions estimates which will improve with more flux data. To reduce uncertainty in upscaled estimates, researchers could prioritize new wetland flux sites along humid‐to‐arid tropical climate gradients, from major rainforest basins (Congo, Amazon, and SE Asia), into monsoon (Bangladesh and India) and savannah regions (African Sahel) and be paired with improved knowledge of wetland extent seasonal dynamics in these regions. The monthly wetland methane products gridded at 0.25° from UpCH4 are available via ORNL DAAC (https://doi.org/10.3334/ORNLDAAC/2253).

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  2. Abstract

    Accounting for temporal changes in carbon dioxide (CO2) effluxes from freshwaters remains a challenge for global and regional carbon budgets. Here, we synthesize 171 site-months of flux measurements of CO2based on the eddy covariance method from 13 lakes and reservoirs in the Northern Hemisphere, and quantify dynamics at multiple temporal scales. We found pronounced sub-annual variability in CO2flux at all sites. By accounting for diel variation, only 11% of site-months were net daily sinks of CO2. Annual CO2emissions had an average of 25% (range 3%–58%) interannual variation. Similar to studies on streams, nighttime emissions regularly exceeded daytime emissions. Biophysical regulations of CO2flux variability were delineated through mutual information analysis. Sample analysis of CO2fluxes indicate the importance of continuous measurements. Better characterization of short- and long-term variability is necessary to understand and improve detection of temporal changes of CO2fluxes in response to natural and anthropogenic drivers. Our results indicate that existing global lake carbon budgets relying primarily on daytime measurements yield underestimates of net emissions.

     
    more » « less
  3. null (Ed.)
  4. Abstract. The uptake of carbonyl sulfide (COS) by terrestrial plants is linked tophotosynthetic uptake of CO2 as these gases partly share the sameuptake pathway. Applying COS as a photosynthesis tracer in models requires anaccurate representation of biosphere COS fluxes, but these models have notbeen extensively evaluated against field observations of COS fluxes. In thispaper, the COS flux as simulated by the Simple Biosphere Model, version 4(SiB4), is updated with the latest mechanistic insights and evaluated with siteobservations from different biomes: one evergreen needleleaf forest, twodeciduous broadleaf forests, three grasslands, and two crop fields spread overEurope and North America. We improved SiB4 in several ways to improve itsrepresentation of COS. To account for the effect of atmospheric COS molefractions on COS biosphere uptake, we replaced the fixed atmospheric COS molefraction boundary condition originally used in SiB4 with spatially andtemporally varying COS mole fraction fields. Seasonal amplitudes of COS molefractions are ∼50–200 ppt at the investigated sites with aminimum mole fraction in the late growing season. Incorporating seasonalvariability into the model reduces COS uptake rates in the late growingseason, allowing better agreement with observations. We also replaced theempirical soil COS uptake model in SiB4 with a mechanistic model thatrepresents both uptake and production of COS in soils, which improves thematch with observations over agricultural fields and fertilized grasslandsoils. The improved version of SiB4 was capable of simulating the diurnal andseasonal variation in COS fluxes in the boreal, temperate, and Mediterraneanregion. Nonetheless, the daytime vegetation COS flux is underestimated onaverage by 8±27 %, albeit with large variability across sites. On aglobal scale, our model modifications decreased the modeled COS terrestrialbiosphere sink from 922 Gg S yr−1 in the original SiB4 to753 Gg S yr−1 in the updated version. The largest decrease influxes was driven by lower atmospheric COS mole fractions over regions withhigh productivity, which highlights the importance of accounting forvariations in atmospheric COS mole fractions. The change to a different soilmodel, on the other hand, had a relatively small effect on the globalbiosphere COS sink. The secondary role of the modeled soil component in theglobal COS budget supports the use of COS as a global photosynthesis tracer. Amore accurate representation of COS uptake in SiB4 should allow for improvedapplication of atmospheric COS as a tracer of local- to global-scaleterrestrial photosynthesis. 
    more » « less
  5. null (Ed.)
    Abstract Wetland methane (CH 4 ) emissions ( $${F}_{{{CH}}_{4}}$$ F C H 4 ) are important in global carbon budgets and climate change assessments. Currently, $${F}_{{{CH}}_{4}}$$ F C H 4 projections rely on prescribed static temperature sensitivity that varies among biogeochemical models. Meta-analyses have proposed a consistent $${F}_{{{CH}}_{4}}$$ F C H 4 temperature dependence across spatial scales for use in models; however, site-level studies demonstrate that $${F}_{{{CH}}_{4}}$$ F C H 4 are often controlled by factors beyond temperature. Here, we evaluate the relationship between $${F}_{{{CH}}_{4}}$$ F C H 4 and temperature using observations from the FLUXNET-CH 4 database. Measurements collected across the globe show substantial seasonal hysteresis between $${F}_{{{CH}}_{4}}$$ F C H 4 and temperature, suggesting larger $${F}_{{{CH}}_{4}}$$ F C H 4 sensitivity to temperature later in the frost-free season (about 77% of site-years). Results derived from a machine-learning model and several regression models highlight the importance of representing the large spatial and temporal variability within site-years and ecosystem types. Mechanistic advancements in biogeochemical model parameterization and detailed measurements in factors modulating CH 4 production are thus needed to improve global CH 4 budget assessments. 
    more » « less
  6. Abstract

    The terrestrial net ecosystem productivity (NEP) has increased during the past three decades, but the mechanisms responsible are still unclear. We analyzed 17 years (2001–2017) of eddy‐covariance measurements of NEP, evapotranspiration (ET) and light and water use efficiency from a boreal coniferous forest in Southern Finland for trends and inter‐annual variability (IAV). The forest was a mean annual carbon sink (252 [42] gC ), and NEP increased at rate +6.4–7.0 gC (or ca. +2.5% ) during the period. This was attributed to the increasing gross‐primary productivity GPP and occurred without detectable change in ET. The start of annual carbon uptake period was advanced by 0.7 d , and increase in GPP and NEP outside the main growing season contributed ca. one‐third and one‐fourth of the annual trend, respectively. Meteorological factors were responsible for the IAV of fluxes but did not explain the long‐term trends. The growing season GPP trend was strongest in ample light during the peak growing season. Using a multi‐layer ecosystem model, we showed that direct fertilization effect diminishes when moving from leaf to ecosystem, and only 30–40% of the observed ecosystem GPP increase could be attributed to . The increasing trend in leaf‐area index (LAI), stimulated by forest thinning in 2002, was the main driver of the enhanced GPP and NEP of the mid‐rotation managed forest. It also compensated for the decrease of mean leaf stomatal conductance with increasing and LAI, explaining the apparent proportionality between observed GPP and trends. The results emphasize that attributing trends to their physical and physiological drivers is challenged by strong IAV, and uncertainty of LAI and species composition changes due to the dynamic flux footprint. The results enlighten the underlying mechanisms responsible for the increasing terrestrial carbon uptake in the boreal zone.

     
    more » « less
  7. null (Ed.)
  8. Abstract. While the role of highly oxygenated molecules (HOMs) in new particleformation (NPF) and secondary organic aerosol (SOA) formation is not indispute, the interplay between HOM chemistry and atmospheric conditionscontinues to draw significant research attention. During the Influence ofBiosphere-Atmosphere Interactions on the Reactive Nitrogen budget (IBAIRN)campaign in September 2016, profile measurements of neutral HOMs below andabove the forest canopy were performed for the first time at the borealforest SMEAR II station. The HOM concentrations and composition distributionsbelow and above the canopy were similar during daytime, supporting awell-mixed boundary layer approximation. However, much lower nighttime HOMconcentrations were frequently observed at ground level, which was likely dueto the formation of a shallow decoupled layer below the canopy. Near theground HOMs were influenced by the changes in the precursors and oxidants andenhancement of the loss on surfaces in this layer, while the HOMs above thecanopy top were not significantly affected. Our findings clearly illustratethat near-ground HOM measurements conducted under stably stratifiedconditions at this site might only be representative of a small fraction ofthe entire nocturnal boundary layer. This could, in turn, influence thegrowth of newly formed particles and SOA formation below the canopy where thelarge majority of measurements are typically conducted. 
    more » « less
  9. Abstract The Integrated Carbon Observation System Research Infrastructure aims to provide long-term, continuous observations of sources and sinks of greenhouse gases such as carbon dioxide, methane, nitrous oxide, and water vapour. At ICOS ecosystem stations, the principal technique for measurements of ecosystem-atmosphere exchange of GHGs is the eddy-covariance technique. The establishment and setup of an eddy-covariance tower have to be carefully reasoned to ensure high quality flux measurements being representative of the investigated ecosystem and comparable to measurements at other stations. To fulfill the requirements needed for flux determination with the eddy-covariance technique, variations in GHG concentrations have to be measured at high frequency, simultaneously with the wind velocity, in order to fully capture turbulent fluctuations. This requires the use of high-frequency gas analysers and ultrasonic anemometers. In addition, to analyse flux data with respect to environmental conditions but also to enable corrections in the post-processing procedures, it is necessary to measure additional abiotic variables in close vicinity to the flux measurements. Here we describe the standards the ICOS ecosystem station network has adopted for GHG flux measurements with respect to the setup of instrumentation on towers to maximize measurement precision and accuracy while allowing for flexibility in order to observe specific ecosystem features. 
    more » « less